Extending Structures

Fundamentals and Applications

; Gigel Militaru

Extending Structures: Fundamentals and Applications treats the extending structures (ES) problem in the context of groups, Lie/Leibniz algebras, associative algebras and Poisson/Jacobi algebras. This concisely written monograph offers the reader an incursion into the extending structures problem which provides a common ground for studying both the extension problem and the factorization problem. Les mer
Vår pris
2363,-

(Innbundet) Fri frakt!
Leveringstid: Sendes innen 21 dager

Innbundet
Legg i
Innbundet
Legg i
Vår pris: 2363,-

(Innbundet) Fri frakt!
Leveringstid: Sendes innen 21 dager

Om boka

Extending Structures: Fundamentals and Applications treats the extending structures (ES) problem in the context of groups, Lie/Leibniz algebras, associative algebras and Poisson/Jacobi algebras. This concisely written monograph offers the reader an incursion into the extending structures problem which provides a common ground for studying both the extension problem and the factorization problem.


Features








Provides a unified approach to the extension problem and the factorization problem







Introduces the classifying complements problem as a sort of converse of the factorization problem; and in the case of groups it leads to a theoretical formula for computing the number of types of isomorphisms of all groups of finite order that arise from a minimal set of data







Describes a way of classifying a certain class of finite Lie/Leibniz/Poisson/Jacobi/associative algebras etc. using flag structures







Introduces new (non)abelian cohomological objects for all of the aforementioned categories







As an application to the approach used for dealing with the classification part of the ES problem, the Galois groups associated with extensions of Lie algebras and associative algebras are described

Fakta

Innholdsfortegnelse

1. Extending structures: the group case 2. Leibniz algebras 3.Lie algebras 4. Associative algebras 5. Jacobi and Poisson algebras.

Om forfatteren

Ana Agore is a senior researcher at the Institute of Mathematics of the Romanian Academy, Romania. Her research interests include Hopf algebras and quantum groups, category theory and (non)associative algebras.


Gigel Militaru is a professor at the University of Bucharest, Romania. His primary research interests are non commutative algebra, non-associative (Lie, Leibniz, Jacobi/Poisson) algebras, Hopf algebras and quantum groups.