Mathematics of Politics
It is because mathematics is often misunderstood, it is commonly
believed it has nothing to say about politics. The high school
experience with mathematics, for so many the lasting impression
Les merIt is because mathematics is often misunderstood, it is commonly
believed it has nothing to say about politics. The high school
experience with mathematics, for so many the lasting impression
of the subject, suggests that mathematics is the study of numbers,
operations, formulas, and manipulations of symbols. Those
believing this is the extent of mathematics might conclude
mathematics has no relevance to politics. This book counters this impression.
The second edition of this popular book focuses on mathematical reasoning
about politics. In the search for ideal ways to make certain kinds
of decisions, a lot of wasted effort can be averted if mathematics can determine that
finding such an ideal is actually impossible in the first place.
In the first three parts of this book, we address the following three
political questions:
(1) Is there a good way to choose winners of elections?
(2) Is there a good way to apportion congressional seats?
(3) Is there a good way to make decisions in situations of conflict and
uncertainty?
In the fourth and final part of this book, we examine the Electoral
College system that is used in the United States to select a president.
There we bring together ideas that are introduced in each of the three
earlier parts of the book.
Detaljer
- Forlag
- CRC Press Inc
- Innbinding
- Innbundet
- Språk
- Engelsk
- Sider
- 478
- ISBN
- 9781498798860
- Utgave
- 2. utg.
- Utgivelsesår
- 2016
- Format
- 23 x 15 cm
Om forfatteren
Daniel H. Ullman is a Professor of Mathematics at the George Washington University, where he has been since 1985. He holds a Ph.D. from Berkeley and an A.B. from Harvard. He served as chair of the department of mathematics at GW from 2001 to 2006, as the American Mathematical Society Congressional Fellow from 2006 to 2007, and as Associate Dean for Undergraduate Studies in the arts and sciences at GW from 2011 to 2015. He has been an Associate Editor of the American Mathematical Monthly since 1997. He enjoys playing piano, soccer, and Scrabble.