Advanced Computing in Electron Microscopy

This updated and revised edition of a classic work provides a summary of methods for numerical computation of high resolution conventional and scanning transmission electron microscope images. At the limits of resolution, image artifacts due to the instrument and the specimen interaction can complicate image interpretation. Les mer
Vår pris
1688,-

(Innbundet) Fri frakt!
Leveringstid: Sendes innen 21 dager
På grunn av Brexit-tilpasninger og tiltak for å begrense covid-19 kan det dessverre oppstå forsinket levering.

Innbundet
Legg i
Innbundet
Legg i
Vår pris: 1688,-

(Innbundet) Fri frakt!
Leveringstid: Sendes innen 21 dager
På grunn av Brexit-tilpasninger og tiltak for å begrense covid-19 kan det dessverre oppstå forsinket levering.

Om boka

This updated and revised edition of a classic work provides a summary of methods for numerical computation of high resolution conventional and scanning transmission electron microscope images. At the limits of resolution, image artifacts due to the instrument and the specimen interaction can complicate image interpretation. Image calculations can help the user to interpret and understand high resolution information in recorded electron micrographs. The book contains expanded sections on aberration correction, including a detailed discussion of higher order (multipole) aberrations and their effect on high resolution imaging, new imaging modes such as ABF (annular bright field), and the latest developments in parallel processing using GPUs (graphic processing units), as well as updated references. Beginning and experienced users at the advanced undergraduate or graduate level will find the book to be a unique and essential guide to the theory and methods of computation in electron microscopy.

Fakta

Innholdsfortegnelse

Introduction.- The Transmission Electron Microscope.- Linear Image Approximations.- Sampling and the Fast Fourier Transform.- Calculating Images of Thin Specimens.- Calculating Images of Thick Specimens.- Some Worked Examples.- Program Details.- App. A: Atomic Potentials and Scattering Factors.- App. B: The Fourier Projection Theorem.- App. C: Bilinear Interpolation.- App. D: 3D Perspective View.

Om forfatteren

Earl J. Kirkland graduated from Case Western Reserve University with a BS in Physics, and from Cornell University with a PhD in Applied Physics. He currently teaches in the Applied Physics Department at Cornell.