Numerical Methods for Diffusion Phenomena in Building Physics
A Practical Introduction
Nathan Mendes ; Marx Chhay ; Julien Berger ; Denys Dutykh
- Vår pris
- 1012,-
(Innbundet)
Fri frakt!
Leveringstid: Sendes innen 7 virkedager
På grunn av Brexit-tilpasninger og tiltak for å begrense covid-19 kan det dessverre oppstå forsinket levering.
(Innbundet)
Fri frakt!
Leveringstid: Sendes innen 7 virkedager
På grunn av Brexit-tilpasninger og tiltak for å begrense covid-19 kan det dessverre oppstå forsinket levering.
A brief history of diffusion in physics
Part I Basics of numerical methods for diffusion phenomena
in building physics
2. Heat and Mass Diffusion in Porous Building Elements
2.1 A brief historical
2.2 Heat and mass diffusion models
2.3 Boundary conditions
2.4 Discretization
2.5 Stability conditions
2.6 Linearization of boundary conditions or source terms
2.7 Numerical algorithms
2.8 Multitridiagonal-matrix algorithm
2.9 Mathematical model for a room air domain
2.10 Hygrothermal models used in some available simulation tools
2.11 Final
remarks
3. Finite-Difference Method
3.1 Numerical
methods for time evolution: ODE
3.1.1 An introductory example
3.1.2 Generalization
3.1.3 Systems of ODEs
3.1.4 Exercises
3.2 Parabolic PDE
3.2.1 The heat equation in 1D
3.2.2 Nonlinear case
3.2.3
Applications in engineering
3.2.4 Heat equation in two and three space dimensions
3.2.5 Exercises
4. Basics in Practical Finite-Element Method
4.1 Heat Equation
4.1.1 Weak formulation and test functions
4.1.2
Finite element representation
4.1.3 Finite element approximation
4.2 Finite
element approach revisited
4.2.1 Reference element
4.2.2 Connectivity table
4.2.3 Stiffness matrix construction
4.2.4 Final remarks
Part
II Advanced numerical methods
5 Explicit schemes with improved CFL condition
5.0.1 Some healthy criticism
5.1 Classical numerical schemes
5.1.1 The Explicit scheme
5.1.2 The Implicit scheme
5.1.3 The Leap-frog
scheme
5.1.4 The Crank-Nicholson scheme
5.1.5 Information propagation speed
5.2 Improved explicit schemes
5.2.1 Dufort-Frankel method
5.2.2 Saulyev method
5.2.3 Hyperbolization method
5.3 Discussion
6 Reduced Order Methods
6.1 Introduction
6.1.1 Physical problem and Large Original Model
6.1.2 Model reduction methods for Building
physics application
6.2 Balanced truncation
6.2.1 Formulation of the ROM
6.2.2 Marshall truncation Method
6.2.3 Building the ROM
6.2.4 Synthesis of the algorithm
6.2.5 Application and exercise
6.2.6 Remarks
on the use of balanced truncation
6.3 Modal Identification
6.3.1 Formulation
of the ROM
6.3.2 Identification process
6.3.3 Synthesis of the algorithm
6.3.4 Application and exercise
6.3.5 Some remarks on the use of the MIM
6.4 Proper Orthogonal Decomposition Basics
6.4.2 Capturing the main information
6.4.3 Building the POD model
6.4.4 Synthesis of the algorithm
6.4.5 Application and Exercise
6.4.6 Remarks on the use of the POD
6.5
Proper Generalized Decomposition
6.5.1 Basics
6.5.2 Iterative solution
6.5.3 Computing the modes
6.5.4 Convergence of global enrichment
6.5.5 Synthesis of the algorithm
6.5.6 Application and Exercise
6.5.7
Remarks on the use of the PGD
6.6 Final remarks
7.
Boundary Integral Approaches
7.1 Basic BIEM
7.1.1 Domain and boundary integral
expressions
7.1.2 Green function and boundary integral formulation
7.1.3 Numerical
formulation