Physics of Quantum Rings

Vladimir M. Fomin (Redaktør)

This book deals with a new class of materials, quantum rings. Innovative recent advances in experimental and theoretical physics of quantum rings are based on the most advanced state-of-the-art fabrication and characterization techniques as well as theoretical methods. Les mer
Vår pris
1688,-

(Paperback) Fri frakt!
Leveringstid: Ikke i salg

Paperback
Paperback
Vår pris: 1688,-

(Paperback) Fri frakt!
Leveringstid: Ikke i salg

Om boka

This book deals with a new class of materials, quantum rings. Innovative recent advances in experimental and theoretical physics of quantum rings are based on the most advanced state-of-the-art fabrication and characterization techniques as well as theoretical methods. The experimental efforts allow to obtain a new class of semiconductor quantum rings formed by capping self-organized quantum dots grown by molecular beam epitaxy. Novel optical and magnetic properties of quantum rings are associated with non-trivial topologies at the nanoscale. An adequate characterization of quantum rings is possible on the basis of modern characterization methods of nanostructures, such as Scanning Tunneling Microscopy. A high level of complexity is demonstrated to be needed for a dedicated theoretical model to adequately represent the specific features of quantum rings. The findings presented in this book contribute to develop low-cost high-performance electronic, spintronic, optoelectronic and information processing devices based on quantum rings.

Fakta

Innholdsfortegnelse

Preface.- Quantum Ring: A Unique Playground for the Quantum-Mechanical Paradigm.- Fabrication, Characterization and Physical Properties.- Growth and Spectroscopy of Semiconductor Quantum Rings.- Quantum Rings: Fabrication and Optical Properties.- Self-organized Quantum Rings: Physical Characterization and Theoretical Modeling.- Scanning-probe Electronic Imaging of Lithographically Patterned Quantum Rings.- Self-organized Formation and XSTM-Characterization of GaSb/GaAs Quantum Rings.- Self-assembled Semiconductor Quantum Rings Complexes by Droplet Epitaxy: Growth and Physical Properties.- Aharonov-Bohm Effect for Excitons.- New Versions of the Aharonov-Bohm Effect in Quantum Rings.- Aharonov-Bohm Effect for Neutral Exctions in Quantum Rings.- Optical Aharonov-Bohm Effect in Type-II Quantum Dots.- Theory.- Strained Quantum Rings.- Theoretical Modeling of Electronic and Optical Properties of Semiconductor Quantum Rings.- Coulomb Interaction in Finite-Width Quantum Rings. Differential Geometry Applied to Rings and Moebius Nanostructures.- Hole Mixing in Semiconductor Quantum Rings.- Engineering of Electron States and Spin Relaxation in Quantum Rings and Quantum Dot-Ring Nanostructures.

Om forfatteren

Professor Vladimir M. Fomin develops theory of strain-induced nano-architectures, in particular, physical properties of self-assembled nano- and microstructures (quantum rings, rolled-up semiconductor and superconductor membranes, superlattices of quantum dots) at the Institute for Integrative Nanosciences (IIN), Leibniz Institute for Solid State and Materials Research (IFW), Dresden, Germany (since 2009). He made his doctoral studies in Kishinev at the Department of Theoretical Physics of the State University of Moldova and received the Ph.D.degree in theoretical physics in 1978. Since then he worked in the Laboratory "Physics of Multi-Layer Structures" at the State University of Moldova. His research interests embraced non-linear optical properties and transport due to the charge-vibration interaction in semiconductors and in multi-layer structures, including derivation of the phonon spectra and the electron-phonon interaction; classification of polaritons and phonons; platonic, bipolaronic and excitonic effects in arbitrary multi-layer structures. He won a State Prize of Moldova in 1987. He received the degree of Dr. habilitat in physical and mathematical sciences from the Academy of Sciences of Moldova in 1991. He is a University Professor in Theoretical Physics (State University of Moldova, since 1995). As a Research Fellow of the Alexander von Humboldt Foundation he worked at the Martin-Luther-University of Halle-Wittenberg (1993-1994). He was associated with the Laboratory Theoretical Solid State Physics (TFVS) (University of Antwerp, 1995-2008) and with the Group Photonics and Semiconductor Nanophysics and COBR