Strong Nonlinear Oscillators
Analytical Solutions
- Vår pris
- 2194,-
(Paperback)
Fri frakt!
Leveringstid: Sendes innen 21 dager
På grunn av Brexit-tilpasninger og tiltak for å begrense covid-19 kan det dessverre oppstå forsinket levering.
(Paperback)
Fri frakt!
Leveringstid: Sendes innen 21 dager
På grunn av Brexit-tilpasninger og tiltak for å begrense covid-19 kan det dessverre oppstå forsinket levering.
Besides the oscillators with one degree-of-freedom, the one and two mass oscillatory systems with two-degrees-of-freedom and continuous oscillators are considered. The chaos and chaos suppression in ideal and non-ideal mechanical systems is explained.
In this second edition more attention is given to the application of the suggested methodologies and obtained results to some practical problems in physics, mechanics, electronics and biomechanics. Thus, for the oscillator with two degrees-of-freedom, a generalization of the solving procedure is performed. Based on the obtained results, vibrations of the vocal cord are analyzed. In the book the vibration of the axially purely nonlinear rod as a continuous system is investigated. The developed solving procedure and the solutions are applied to discuss the muscle vibration. Vibrations of an optomechanical system are analyzed using the oscillations of an oscillator with odd or even quadratic nonlinearities. The extension of the forced vibrations of the system is realized by introducing the Ateb periodic excitation force which is the series of a trigonometric function.
The book is self-consistent and suitable for researchers and as a textbook for students and also professionals and engineers who apply these techniques to the field of nonlinear oscillations.
0.1 Preface to Second Edition . . . . . . . . . . . . . . . . . . . . . . viii
1 Introduction
1
2 Nonlinear Oscillators 5
2.1 Physical models . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 5
2.2 Mathematical models . . . . . . . . . . . . . . . . . . . . . . .
. . 7
2.3 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3 Pure Nonlinear Oscillator 19
3.1 Qualitative analysis . . . . . . . . . . . . . . . . . . . . .
. . . . 20
3.1.1 Exact period of vibration . . . . . . . . . . . . . . . . . . 22
3.2 Exact periodical solution . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.1 Linear case
. . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 Odd quadratic nonlinearity . . . . . .
. . . . . . . . . . . 26
3.2.3 Cubic nonlinearity . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Adopted Lindstedt-Poincare method . . . . . . . . . . . . . . . . 28
3.4 Modi.ed
Lindstedt-Poincare method . . . . . . . . . . . . . . . . 31
3.4.1 Comparison of the LP and MLP methods
. . . . . . . . . 32
3.4.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5 Exact amplitude, period and velocity method . . . . . . . . . . . 34
3.6 Solution
in the form of Jacobi elliptic function . . . . . . . . . . 35
3.6.1 Example . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 38
3.7 Solution in the form of a trigonometric function . . . . .
. . . . . 39
3.7.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.7.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.8 Pure nonlinear
oscillator with linear damping . . . . . . . . . . . 42
3.8.1 Parameter analysis . . . . . . .