Machine Learning and Knowledge Discovery in Databases

European Conference, ECML PKDD 2017, Skopje, Macedonia, September 18-22, 2017, Proceedings, Part II

Michelangelo Ceci (Redaktør) ; Jaakko Hollmen (Redaktør) ; Ljupco Todorovski (Redaktør) ; Celine Vens (Redaktør) ; Saso Dzeroski (Redaktør)

Serie: Lecture Notes in Computer Science 10535

The three volume proceedings LNAI 10534 - 10536 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2017, held in Skopje, Macedonia, in September 2017. Les mer
Vår pris

(Paperback) Fri frakt!
Leveringstid: Sendes innen 21 dager

Legg i
Legg i
Vår pris: 1434,-

(Paperback) Fri frakt!
Leveringstid: Sendes innen 21 dager

Om boka

The three volume proceedings LNAI 10534 - 10536 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2017, held in Skopje, Macedonia, in September 2017.

The total of 101 regular papers presented in part I and part II was carefully reviewed and selected from 364 submissions; there are 47 papers in the applied data science, nectar and demo track.

The contributions were organized in topical sections named as follows:
Part I: anomaly detection; computer vision; ensembles and meta learning; feature selection and extraction; kernel methods; learning and optimization, matrix and tensor factorization; networks and graphs; neural networks and deep learning.
Part II: pattern and sequence mining; privacy and security; probabilistic models and methods; recommendation; regression; reinforcement learning; subgroup discovery; time series and streams; transfer and multi-task learning; unsupervised and semisupervised learning.
Part III: applied data science track; nectar track; and demo track.



Pattern and Sequence Mining.- BeatLex: Summarizing and Forecasting Time Series with Patterns.- Behavioral Constraint Template-Based Sequence Classification.- Efficient Sequence Regression by Learning Linear Models in All-Subsequence Space.- Subjectively Interesting Connecting Trees.- Privacy and Security.- Malware Detection by Analysing Encrypted Network Traffic with Neural Networks.- PEM: Practical Differentially Private System for Large-Scale Cross-Institutional Data Mining.- Probabilistic Models and Methods.- Bayesian Heatmaps: Probabilistic Classification with Multiple Unreliable Information Sources.- Bayesian Inference for Least Squares Temporal Difference Regularization.- Discovery of Causal Models that Contain Latent Variables through Bayesian Scoring of Independence Constraints.- Labeled DBN learning with community structure knowledge.- Multi-view Generative Adversarial Networks.- Online Sparse Collapsed Hybrid Variational-Gibbs Algorithm for Hierarchical Dirichlet Process Topic Models.- PAC-Bayesian Analysis for a two-step Hierarchical Multiview Learning Approach.- Partial Device Fingerprints.- Robust Multi-view Topic Modeling by Incorporating Detecting Anomalies.- Recommendation.- A Regularization Method with Inference of Trust and Distrust in Recommender

Systems.- A Unified Contextual Bandit Framework for Long- and Short-Term Recommendations.- Perceiving the Next Choice with Comprehensive Transaction Embeddings for Online Recommendation.- Regression.- Adaptive Skip-Train Structured Regression for Temporal Networks.- ALADIN: A New Approach for Drug-Target Interaction Prediction.- Co-Regularised Support Vector Regression.- Online Regression with Controlled Label Noise Rate.- Reinforcement Learning.- Generalized Inverse Reinforcement Learning with Linearly Solvable MDP.- Max K-armed bandit: On the ExtremeHunter algorithm and beyond.- Variational Thompson Sampling for Relational Recurrent Bandits.- Subgroup Discovery.- Explaining Deviating Subsets through Explanation Networks.- Flash points: Discovering exceptional pairwise behaviors in vote or rating data.- Time Series and Streams.- A Multiscale Bezier-Representation for Time Series that Supports Elastic Matching.- Arbitrated Ensemble for Time Series Forecasting.- Cost Sensitive Time-series Classification.- Cost-Sensitive Perceptron Decision Trees for Imbalanced Drifting Data Streams.- Efficient Temporal Kernels between Feature Sets for Time Series Classification.- Forecasting and Granger modelling with non-linear dynamical dependencies.- Learning TSK Fuzzy Rules from Data Streams.- Non-Parametric Online AUC Maximization.- On-line Dynamic Time Warping for Streaming Time Series.- PowerCast: Mining and Forecasting Power Grid Sequences.- UAPD: Predicting Urban Anomalies from Spatial-Temporal Data.- Transfer and Multi-Task Learning.- A Novel Rating Pattern Transfer Model for Improving Non-Ove