Data Analysis and Graphics Using R

An Example-Based Approach

; W. John Braun

Data Analysis and Graphics Using R

Discover what you can do with R! Introducing the R system, covering standard regression methods, then tackling more advanced topics, this book guides users through the practical, powerful tools that the R system provides. Les mer
Vår pris
1219,-

(Innbundet) Fri frakt!
Leveringstid: Usikker levering*
*Vi bestiller varen fra forlag i utlandet. Dersom varen finnes, sender vi den så snart vi får den til lager

Vår pris: 1219,-

(Innbundet) Fri frakt!
Leveringstid: Usikker levering*
*Vi bestiller varen fra forlag i utlandet. Dersom varen finnes, sender vi den så snart vi får den til lager

Om boka

Data Analysis and Graphics Using R

Discover what you can do with R! Introducing the R system, covering standard regression methods, then tackling more advanced topics, this book guides users through the practical, powerful tools that the R system provides. The emphasis is on hands-on analysis, graphical display, and interpretation of data. The many worked examples, from real-world research, are accompanied by commentary on what is done and why. The companion website has code and datasets, allowing readers to reproduce all analyses, along with solutions to selected exercises and updates. Assuming basic statistical knowledge and some experience with data analysis (but not R), the book is ideal for research scientists, final-year undergraduate or graduate-level students of applied statistics, and practising statisticians. It is both for learning and for reference. This third edition expands upon topics such as Bayesian inference for regression, errors in variables, generalized linear mixed models, and random forests.

Preface; Content - how the chapters fit together; 1. A brief introduction to R; 2. Styles of data analysis; 3. Statistical models; 4. A review of inference concepts; 5. Regression with a single predictor; 6. Multiple linear regression; 7. Exploiting the linear model framework; 8. Generalized linear models and survival analysis; 9. Time series models; 10. Multi-level models, and repeated measures; 11. Tree-based classification and regression; 12. Multivariate data exploration and discrimination; 13. Regression on principal component or discriminant scores; 14. The R system - additional topics; 15. Graphs in R; Epilogue; Index of R symbols and functions; Index of authors.

Hands-on guide to the R system for data analysis for scientists, students and practising statisticians.

Fakta