Functional and Impulsive Differential Equations of Fractional Order

Qualitative Analysis and Applications

; Gani Stamov

The book presents qualitative results for different classes of fractional equations, including fractional functional differential equations, fractional impulsive differential equations, and fractional impulsive functional differential equations, which have not been covered by other books. Les mer
Vår pris
725,-

(Paperback) Fri frakt!
Leveringstid: Ikke i salg
På grunn av Brexit-tilpasninger og tiltak for å begrense covid-19 kan det dessverre oppstå forsinket levering.

Paperback
Paperback
Vår pris: 725,-

(Paperback) Fri frakt!
Leveringstid: Ikke i salg
På grunn av Brexit-tilpasninger og tiltak for å begrense covid-19 kan det dessverre oppstå forsinket levering.

Om boka

The book presents qualitative results for different classes of fractional equations, including fractional functional differential equations, fractional impulsive differential equations, and fractional impulsive functional differential equations, which have not been covered by other books. It manifests different constructive methods by demonstrating how these techniques can be applied to investigate qualitative properties of the solutions of fractional systems. Since many applications have been included, the demonstrated techniques and models can be used in training students in mathematical modeling and in the study and development of fractional-order models.

Fakta

Innholdsfortegnelse

Introduction. Preliminary Notes. Qualitative Properties Definitions. Lyapunov Functions and their Fractional Derivatives. Fractional Comparison Lemmas. Stability and Boundedness. Lyapunov Stability. Theorems on Boundedness. Global Stability. Mittag-Leffler Stability. Practical Stability. Lipschitz Stability. Stability of Sets. Stability of Integral Manifolds. Almost Periodicity. Almost Periodic Solutions. Lyapunov Method for Almost Periodic Solutions. Uncertain Fractional Differential Systems. Applications. Fractional Impulsive Neural Networks. Stability and Synchronization. Almost Periodic Solutions. The Uncertain Case. Fractional Impulsive Biological Models. Lasota-Wazewska Models. Lotka-Volterra Models. Kolmogorov-type Models. Fractional Impulsive Models in Economics.

Om forfatteren

Ivanka Stamova received her Ph.D. degree in Differential Equations in 1996 and her Dr.Sci. degree in Applied Mathematics in 2009, both from the Higher Accreditation Commission of Bulgaria. She is the author of Stability Analysis of Impulsive Functional Differential Equations (2009) and editor of Lotka-Volterra and Related Systems: Recent Developments in Population Dynamics (2013). She has authored more than 200 papers and serves on the Editorial Boards of several international journals. Her current research interests include qualitative analysis of nonlinear dynamical systems, fractional differential systems, and impulsive control.

Gani T. Stamov received his M.Sc. degree in Mathematics from Plovdiv University, Bulgaria in 1984 and his Ph.D. degree from the Higher Accreditation Commission of Bulgaria in 1999. In 2011, he received his Dr.Sci. degree in Applied Mathematics from the University of Chemical Technology and Metallurgy, Bulgaria. Currently, he works as a Mathematics Professor at the Technical University of Sofia, Bulgaria. His current research interests include qualitative analysis of nonlinear dynamical systems, integral manifolds, and almost periodic solutions. He is the author of Almost Periodic Solutions of Impulsive Differential Equations (2012) and has received numerous research grants.