Direct Methods in the Calculus of Variations

Serie: Applied Mathematical Sciences 78

This book is developed for the study of vectorial problems in the calculus of variations. The subject is a very active one and almost half of the book consists of new material. This is a new edition of the earlier book published in 1989 and it is suitable for graduate students. Les mer
Vår pris
1856,-

(Innbundet) Fri frakt!
Leveringstid: Usikker levering*
*Vi bestiller varen fra forlag i utlandet. Dersom varen finnes, sender vi den så snart vi får den til lager
På grunn av Brexit-tilpasninger og tiltak for å begrense covid-19 kan det dessverre oppstå forsinket levering.

Vår pris: 1856,-

(Innbundet) Fri frakt!
Leveringstid: Usikker levering*
*Vi bestiller varen fra forlag i utlandet. Dersom varen finnes, sender vi den så snart vi får den til lager
På grunn av Brexit-tilpasninger og tiltak for å begrense covid-19 kan det dessverre oppstå forsinket levering.

Om boka

This book is developed for the study of vectorial problems in the calculus of variations. The subject is a very active one and almost half of the book consists of new material. This is a new edition of the earlier book published in 1989 and it is suitable for graduate students. The book has been updated with some new material and examples added. Applications are included.

Fakta

Innholdsfortegnelse

Convex analysis and the scalar case.- Convex sets and convex functions.- Lower semicontinuity and existence theorems.- The one dimensional case.- Quasiconvex analysis and the vectorial case.- Polyconvex, quasiconvex and rank one convex functions.- Polyconvex, quasiconvex and rank one convex envelopes.- Polyconvex, quasiconvex and rank one convex sets.- Lower semi continuity and existence theorems in the vectorial case.- Relaxation and non-convex problems.- Relaxation theorems.- Implicit partial differential equations.- Existence of minima for non-quasiconvex integrands.- Miscellaneous.- Function spaces.- Singular values.- Some underdetermined partial differential equations.- Extension of Lipschitz functions on Banach spaces.